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Computer-Aided Synthesis of the Optimum
Refractive-Index Profile for a Multimode

Fiber
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Abstract—In a multimode optical fiber, the so-called multimode

dispersion (mode-delay difference) is the principal cause lhat widens

the transmitted puke. The multimode dispersion can be controlled by the
refractive-index profile. However, the optimum profile that minimizes the

multimode dispersion has not yet been determined.
This paper describes the computer-aided trial-and-error synthesis of

the optimum refracti~e-index profile. It is shown that the group delay is
reduced to about 10-3 times the value obtained with the uniform core
fiber, to about 10 ps/km. This value is comparable to the material dis-

persion obtained with an ordinary fused-silica fiber and a typical semi-
conductor laser. It is also shown that the optimum profile is :Bsmoothed

W-shaped one.

I. INTRODUCTION

SEVERAL types of permittivity profiles htlVe been

proposed as the optimum profile that minimizes the

multimode dispersion (mode-delay difference) of an optical

fiber [1]–[4]. In those proposals, however, the permittivity

in the core is assumed to be proportional to r’, where r

is the radial coordinate and a is an arbitrary positive

quantity. Therefore, the obtained profile cannot be the

genuine optimum.

This paper describes an approach to the genuine c)ptimum.

We express the permittivity in the core by a power series in

terms of r, and use the variational method [5] f o obtain

the delay time of each propagation mode. Next we compute

the variance of the delay time, i.e., the group delay. Then

we modify the permittivity profile so as to decrease the

group delay toward its minimum. We repeat the afore-
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mentioned process of analysis, estimation, and modification

until we obtain the optimum permittivity profile with which

the group delay is minimized. The whole process of such

trial-and-error synthesis is performed in the computer.

The example of the synthesis described in Section V of

this paper is the synthesis of the optimum profile for a

fiber in which ten LP modes propagate. The same method

can, of course, be used for any number of modes. It is

shown that the group delay can be reduced to about

10-3 times the value obtained with the uniform core fiber,

to about 10 ps/km, and that the optimum profile is a

smoothed W-shaped one. This result substantiates the

validity of the proposals made by Suematsu and Furuya

for slab waveguides [6] and the present authors [3].

II. RESTRICTING CONDITIONS

We assume that the refractive-index distribution is

axially symmetric, and that the quantities listed as follows

remain constant in the course of the optimization:

1) wavelength of light 2;

2) the maximum refractive index nl in the core and the

refractive index in the cladding nz;

3) number of propagating LP modes ikf.

Note that the core radius a is not fixed. The relative

difference of the refractive indices, which is defined
conventionally as

(1)A = (%2 – ’22) ~ (% – n2)

2n12 nl

also remains constant from the preceding condition (2).
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Fig. 1. Refractive-index profil~;e; radially inhomogeneous optical

Next, we express the refractive index as

n2(r) =
(

rt12[l – 2Ag(r)],

nz 2 = n12[l – 2A],

O<r<a

r>a (2)

where

‘(r)=,uw’p-e)2pl ‘3)
and r. is the radius where n(r) is highest (see Fig. 1). The

coefficients 7CP(p = 1,2,. . . ,n) are the parameters represent-

ing the refractive-index profile. Our aim is to determine the

optimum set of XP4

111, ANALYSIS OF AN OPTICAL FIBER USING VARIATIONAL

METHOD

The first step in the trial-and-error synthesis is the analysis

of a given fiber. A method of analysis based upon the

variational principle [5] will be briefly described.

A. Propagation Constant

The propagation constant P of an axially symmetric

optical fiber is expressed as [7]

(4)

where Y(r,6) is the electric field in the optical fiber, and

k = 2rc/L The electric field in the cladding is given by

‘Clad(r>e) = Rm(a) ‘m(wr/a) ~ ~- jrne
K.(w) ~2n

(5)

where m denotes the azimuthal mode number, Km is the
modified Hankel function of the order m, and w is a param-

eter defined as

W2 = (f?’ – k2n22)a2. (6)

We express the electric field in the core as

Ycore(rjd) = Rm(r) 1 ~-jm’
Jz

(7)

where Rm(r) is expressed in terms of a set of orthogonal

functions Fti,Jr) as

[n the axially symmetric core,

(9)

{
~k = jl,k-1> form=O

jm- i ,k> form#O (lo)

where j~,k denotes the kth root of J~(z) = O. These func-

tions satisfy the orthonormalizing condition

where dk~ is Kronecker’s delta. The continuity condition

at the core-cladding interface (r = a) is expressed approx-

imately as [5]1

Putting (5), (7), and (12) into (4), and after some com-

putations, we may express f12 in terms of C’k as

where

A mkl =
J

a g(r) F~~(r)F~l(r)r dr (14)
o

V2 = k2n12a22A. (15)

From the condition that fl’ is stationary with respect to a

small variation of Y?, in other words to that of Ck, the follow-

ing conditions must be satisfied for all k:

ap o—= , k = 1,2,...,L.
ack

(16)

Using (13) and (16), we obtain

,~1 CISkt = O, k =,1,2,. ..,L (17)

where

Sk[ = –
2wK~_ l(W)

K.(w)
+ (U2 – ~kz)dk~ – v2A~~1 (18)

U2 = (k2n12 – f12)a2 = V2 – w2. (19)

In order that a nontrivial solution of (17) exists,

det (Skt) = O (20)

must hold. This equation is the characteristic equation which

determines the propagation constant of an optical fiber.

1 An approximation (1 – n(a)/nJ H O is used in deriving (12).
Therefore, when a step or valley is present at the core-cladding bound-
ary, a small error will be introduced by using (12). However, in most
practical cases we may approximate (1 – rz(a)/nJ + O (weak guidance
approximation) and use (12).
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B. Delay Time

The variational expression of the propagation constant

[see (4)] is stationary with respect to a small variation of Y.

Therefore, we may find d~/dk by differentiating (4) only

where k appears explicitly (see Appendix I). Thus we obtain

H
m 2X

‘(kn) lY12r dr dOkn —
/#=oomdk’

U

(21)

2’ \Y12r dr d6
00

Putting (2), (5), and (7) into (21), we obtain

where

()
2p

D pmk 1 = H,mkl – ~ 6kz
a

(28)

J
1

H =2
~2p .Jm(2kx).lm(A1x) ~ dx

pmkl
‘mom “

(29)
o

The value of HP~kl is independent from ~P. We may there-

fore calculate those matrix elements before we start the

synthesis of the optimum refractive-index profile.

IV. SYNTHESIS OF THE OPTIMUM REFRACTIVE-INDEX PROFILE

A. Measure of Multimode Dispersion

As the measure of the multimode dispersion at fre-

quencies where M modes propagate, we define

(30)

where & is a small quantity and a(v) is the variance of the

delay time for the M modes;

~ f ckc,[Amk[ + I/cm - 1]
.k=l 1=1

1

a(o) = + ~$1 [Ti(v) – <T(U))]2 .

(22)

k$ ,~1 Ckcl[ak, + l/& - 1] In the preceding equation,

(31)

where
(T(u)) = ; ,$1 T,(U) (32)

‘% =
K~2(w)

K~_ ~(w)K. , ~(w)
(23a)

ti(~) is the delay time of the ith mode expressed in terms of

~ = d(knl)
1

dk

the normalized frequency, and vC,~,vC,~+ ~ are normalized

(23b) cutoff frequencies of the ikfth mode and the (AZ + l)th
mode, respectively, In defining the measure Q(M), the

variance is averaged between two cutoff frequencies

(23c) because it is practically difficult to choose a specific trans-
mission frequency with respect to (for example, at the

Among the preceding parameters, NI is the grcmp index median of) two cutoff frequencies.

[1], and y is a parameter representing the difference in We consider that the optimum refractive-index profile

material dispersions in the core and the cladding [2]; of an optical fiber transmitting A4 modes is given by the

typically, y = 0.3. From (15) and (19), ~ is given by condition making Q(lf) minimum, Therefore, it is obtained

as a solution of a simultaneous equation

‘=kn’ (1 -2’5)”2
(24) dQ(i14) = o

aKp ‘
p = 1,2, ”””,n. (33)

Thus from (22) and (24), the delay time Per unit lenqth ~(~) B, Routine of the Syntfiesis

may be expressed as
The flow chart (Fig. 2) shows the routine of the synthesis.

-r A ~ = : y_fQ’2Jl (25) C. Modification of x, by Newton-Raphson Method
– dm

As shown at the bottom of Fig. 2, the Newton–Raphson
where c denotes the light velocity in the free space, and method [8] is used in the modification of ~p. This method

will first be described for a single scalar equation. Suppose

~ ~ ckc,[Amk, + I/<m - 1] the numerical solution of an equation
@ = k=l 1=1 (26)

G(K) = O (34)
~ ~ Ckcl[dkl + l/cm - 1] ‘

k=l 1=1 is to be obtained. In the Newton-Raphson method, we

first assume a proper initial value ~i and modify ~ according
The matrix element A~~l is given, from (3), (9), and (14), as to a relation

(35)
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The number of the propagation

4

Initial values of the expansion coefficients of

the refractive index profile (K ) are given.

1

A ~kt=IKD is coruputed.
~=~ P *L

J
Nonnallzed cutoff frequency Vc, i (i=l, 2---- ,f4+l)

I are computed by using variational method. I
I

J
The propagation constant 81 and delay time Ti are

computed between v= ,M and v= ,M+l for the M

propagating modes. I

I

I
*NO

I Coefficients Km’s are modified by Newton-Raphson I
r

method (see Section 4.3) . I
Fig. 2, Routine of the synthesis of the optimum refractive-index

profile.

where h denotes the number of repetitions and d is a

deceleration factor for preventing oscillation of the solution.

In the present case, the solution of a simultaneous

equation

/Gl(rc)\

(.1G(ir) = ‘2~) = O (36)

\Gn(ic)/

must be obtained, where x = (K1,K2, ” “ “ ,rcn)T. In this

case the modification formula corresponding to (35) is

given as

icfi+~ = rc~ – dJ -1 (rck)G(ich). (37)

In the preceding equation J-1 is the inverse matrix of J,

which is the Jacobian of G(rc) with respect to ~:

(
J1 ,(rc) o“ o J1~(rc)

J(rc) = ;

‘)

(38)

Jnl(rc) “ . “ J.:(rc)

where

Under proper conditions, rck converges to the solution of

(36), which satisfies

J- l(rc)G(rc) = O (40a)

lc*+~ — Kh -+ o. (40b)

In the present problem, each line of the simultaneous

equation (36) is given, from (33), as

[In the actual computation of Q(ikf), the integrals in (30)

are replaced by summations to save the computer time.

That is, we choose N sampling points Vj (j = 1,2,”0” ,N) .

between VC,Mand VC,M+~ and use

(42)

as the approximate measure of the multimode dispersion

instead of (30).] Therefore, each element of G(rc) and J(rc)

is given, from (39), (41), and (42), as

(43)

1 N @C7(l)j)
Jp,(k) = – ~ —

N j= I &q8~p’
p,q = 1,2, ” “ “,n. (44)

The details of the computation of GP(w) and Jpq(rc) are

described in Appendix II [see (A20) and (A24)]. Putting

those values into (37), we may compute rc~+ ~ from ~h.

Repetition of such a process finally leads to the optimum

rc, that is, the optimum set of ~p.

V. RESULTS

To show the feasibility of the preceding process, an

example of the synthesis will be described for the following

parameters:

M=lo

n=5

N=3

L=1O

y = 0.3

n~ = 1.5

A = 0.01

(ikf: number of propagating linearly polarized

(LP) modes2);

(n: number of terms representing the refractive-

index profile);

(N: number of sampling points between VC,IO

and VC,II);

(L: number of terms representing the electric

field in the core);

(y: difference in material dispersions in the

core and the cladding);

(n,: maximum refractive index in the core);

(A: see (l)).

The starting profile is a “quadratic distribution with a

valley having depth equal to half the peak” (that is, icl =

1.5, ~z = K3 = JCq= K5 = O). Such a profile has been

claimed by the present authors to be a fairly good one as

far as a-power refractive-index distributions in the core

are considered [3].

The gradual change of the profile is shown in Fig. 3,

where the abscissa h denotes the number of repetitions

performed. The corresponding variation of the normalized

delay time between UC,lo and UC,~~ is shown in Fig. 4. The

variations of maximum delay difference between modes

(C5Z~Ax) and the square root of the measure Q(M) de-

fined by (30) are shown in Fig. 5(b). It is found that both

~~~~x and ~Q(14) are reduced dramatically; it is reduced

to about 3 x 10-3 times the starting value. Note that the

2 The total number of the degenerated modes (having different
polarizations and/or field configurations) included in the 10 LP modes
is 34.
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Fig, 3. Variation of the refractive-index profile. Initial profile is a
quadratic with step (rcl = 1,5,rc2 = K3 = ICg= ~,, = O).

starting value itself is much lower than the value obtained

with a uniform-core fiber. The typical values of 6z~Ax for

M = 10 are approximately 30000 ps/km for the uniform-

core fiber, 14000 ps/km for the starting profde,3 and

30 ps/km for the really optimized profile. The last value is

comparable to the material dispersion obtained with an

ordinary silica fiber and a typical semiconductor laser with

a wavelength spread of 0,2 nm; for such a combination

~Tmateriai is WCaW 20 PS/krn.

The variations of the expansion coefficients are shown

3This value may seem too large; the reason is that the highest order
mode is included in the calculation of dz~*x. If we exclucle the highest
order mode, &~*x is 25 000 ps/km for the uniform-core fiber and
3000 ps/km for the starting profile.
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in Fig. 5(a) as functions of h. It is found that the coefficients

for higher order terms (for x6,x8,x10) drastically increases,

but the resultant profiles are apparently similar to the

original. The principal difference is that the sharp valley

is smoothed.

The computer time required was about 20 s for one cycle

of the analysis, estimation, and modification, when HITAC

8700/8800 was used.

VI. DISCUSSIONS

1) In the preceding section, an example of the synthesis

has been described for an optical fiber in which ten modes

propagate. Of course, the same methods may be used for

any number of modes M. However, the computer time

required is proportional to A42.

2) A possible trouble inherent to such a trial-and-error

optimization is the presence of many optima, that is, the

possibility of arriving at different “optimum” profiles when

the starting profiles are different. Mathematically, such a

possibility cannot be denied in the present case. However,

another trial-and-error synthesis starting from a different

profile (KI = 1.0, rcz = rc~ = rcl = W5 = O) finally led to

an optimum profile the same as Fig. 3(h). The authors

believe that the same profile is obtained unless we start

from an intentionally peculiar (for example, sawtoothlike)

profile.

3) In Fig. 5(b) the readers might notice a sudden decrease

of the dispersion at h = 14. Such a phenomenon is some-

times encountered in the Newton–Raphson solution; it is

due to an accidental, lucky coincidence. Note that the

expansion coefficients do not show any drastic change at

h = 14.

4) We should note that the dispersion is reduced by 10-i

between h = 50 and h = 70, whereas the profiles show very

little difference between them. In the present state-of-the-

art, such a little difference of the profile can never be con-

trolled. Establishment of a very fine profile-control tech-

nique [probably a computer-controlled chemical vapor

deposition (CVD) technique] is desired.

5) By the curve-fitting method, it was found that the

optimum refractive-index profile can be approximated as

n2(r) = nlz[l – 4.00A(r/a)227]

for O < r/a s 0.9, when y = 0,3. On the other hand, when

y = 0.0, the approximate profile is given as

n2(r) = nlz[l – 4.04A(r/a)l.97]

for O s r/a s 0,9. These approximate formulas are in

good agreement with Olshansky and Keck’s result [2],

6) To demonstrate the effectiveness of the refractive-index

valley at the core–cladding boundary, values of #’Q(A4)

of quadratic-core fibers have been computed for various

A4 as functions of the valley depth, Fig. 6(a) shows ~Q(i14)

as functions of the parameter p representing the valley

depth (see [3]). It is found that the deeper the valley, the

smaller the value of ~Q(I@. In Fig. 6(b), cases are compared

when the valley is filled up to various levels. It is found that a

minimum point is present for po. In the case of M = 10,
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square root of the measure of the multimode dispersion (~Q(JVZ))
and the maximum value of the mode delay difference (6r~AX).

for which the synthesis has been performed, the minimum

is found at p. = 1,5, which gives a good approximation to

the optimum profile obtained by the synthesis [see Fig. 3(h)].

VII. CONCLUSION

The optimum refractive-index profile of a multimode

fiber has been obtained by a computer-aided trial-and-error

synthesis method. The proposed method will be useful for

the design of multimode optical fibers.
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Fig, 6. The measure ~Q(M) of quadratic core fiber for various Al;
(a) as functions of the valley depth, (b) as functions of the level to
which the valley is filled up.

APPENDIX I

DERIVATION OF (21) [9]

We first note that the right-hand side of (4) is stationary

for a small variation of Y(r,O). When k deviates slightly

making ~ and Y also deviate, we have

J(p + 8p)’ Iw + w]’ a’
s

J- [kn + d(kn)]’1’+’ + tPP12 dS
s

J

- IVY, + 6VY12 dS = O (Al)
s
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where f. dS denotes the integral over the cross section of the where C is an L-element column vector consisting of C~ in

fiber. Neglecting the terms of order 62, we may rewrite (8), and S and Ware L x L matrices:

(Al) as

(J
/32 IY12 dS –

s J s ‘2n2’y’2ds+ovy’2 ds)

Sk, = –
2wK~_ ,(W)

K.(w)
+ (U2 – 2~2)d~1 – v2A~~1 (Al 1)

w~~ = d~~ + l/g-m – 1. (A12)

[J J
Partially differentiating (A9) and (A1O) with respect to

+ P2 C51Y?12dS - k2n26]Y12 dS +
s s J3vy’’ds] ‘p@= 1)2yn)ywe0btain

(J

S*C + se+ = o

+ 2/kv3 IY]2 dS – 2
J )

(A13)

kn(5(kn)lY12 dS = O. (A2) @w*c + CT WC* = o (A14)
s s

Applying the stationary condition 6/32 = O, that is,
where the symbol * denotes a differentiation with respect to

rcP.We may combine (Al 3) and (A14) to obtain

/32~ 61Y12dS - ~ k2n261Y12 dS + j 61VY12 dS = O
AC* = –BC (A15)

s s s where A and B are (L + 1) x L matrices given as
(A3)

to the second term of (A2), and also applying (4) to the ()
A= s

c’ w

first term of (A2), we obtain

()
B= ‘*~c’ W* “

jltip ~ IY12 dS - ~ knb(kn)lY12 dS = O. (A4)
s s By using the generalized inverse matrix

Equation (A4) may be rewritten as
expressed as

A- = AT(AAT)-l

f
kn !!!@ IY12 ds C* is given, from (Al 5) and (A18), as

d~
P~=’ ‘k .

J

(A5) C* = –A(AAT)-lBC.

IY12 dS Putting (31), (32), (42), and (A7) into (41),
“

(A16)

(A17)

of A which is

(A18)

(A19)

we obtain
-.

G,(K) = <rTp> – <IW’p)) (A20)

APPENDIX II

DERIVATION OF EQUATIONS GXVING Gp(rc) AND ~p~(w)
where

From (22), delay time z is expressed as ()
r=$– 2+~@ (A21)

(A22)

Partially differentiating z with respect to x,, dt/&cp is given
~ [ ~ ‘ii] [~ ~~ Zjp] ~ (A23)<’}<Tp~ = ~ ,11 i ~~1

d~ ANl ~
. . —
alcp c “

p = 1,2, ”””,n (A7)
We may also obtain .lP, from (31), (32), (43), and (A7) as

where Jp@ = <TP~> – <TP)(T,> (A24)

() i,i (c’2:+c’~ )ac’ {@[dkt + I/cm - 1] - [Am,, + I/<m - 1]}

T,= 2+2
2

‘~, ,~1 Ckc,[tik, + I/cm - 1]

()

,~1 ,~1 C,CiDpm,l

– l+; . (A8)

,~, ,~1 Ckc,[d,, + l/<~ - 1]

In the preceding calculation, it is assumed that nl and A where

do not change in the course of the optimization.
~TPTq~ = * jfl [~ jl ~jPTjqThe term dC1/d~P in (A8) can be calculated as follows. 1 (A25)

From (17) and the normalizing condition for the power

density, we have <TP)(T,> = ~ j~l [~ ~1 Zip] [~ ~1 ~j~] . (A2’)

Sc=o (A9)

CTWC = 1 (A1O) In (A20) and (A24), G, and J,, are normalized by 2(AN1/c)2.
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Short Papers_

Propagation in Circular Waveguide Loaded with an

Azimuthally Magnetized Ferrite Tube

OLIVIER PARRIAUX AND FRED E. GARDIOL,
SENIOR MIiMBER, IEEE

Abstract—A new computer method for the study of radially inhomo-

geneona gaidmg structures presenting circular symmetry is utilized to
detm-rairre propagation properties of a ferrite loaded guide. The uon-
reeiproeal characteristics obtained can be nsed to design latching rotators

and differential phase shifters for polarization orthogonality restoration
in high-frequency (above 10 GHz) communication systems with frequency

reuse.

I. INTRODUCTION

A circular waveguide loaded with one or several tubes of

azimuthally magnetized ferrite supports nonreciprocal modes of

propagation, which may be used to realize rotators and differen-

tial phase shifters. This possibility was briefly outlined by Fox

et al. [1] and by Clarricoats [2].

Until now, however, the studies devoted to this guiding struc-

ture only considered TEOn modes, for which an exact analytical

solution is available in terms of hypergeometric functions [3 ]– [6 ].

A perturbation method aIso developed for this structure was

applied only to study TEO. mode propagation [7]. It must be

noted, however, that the dominant mode of the empty circular

waveguide is the TE ~~ mode, which is not part of the TEO. mode

subset; the mode hierarchy remains basically the same for low

to medium loading of the waveguidc, i.e., conditions most

suitable for device operation. Only when the waveguide is more

heavily loaded with dielectric inserts does the mode inversion

Manuscript received April 2, 1976,;revised July 19, 1976. This work was
supported by the Swiss National Science Foundation under Grant 2, 346,,1 meu, /3.

O. Parriaux was with the Chaire d’Electromagn&isme et d’Hyperfr.5-
quences, ~cole Polytechnique F&d&rale, Lausanne, Switzerland. He is now
with the Department of Electrical and Electronics Engineering, Umversity
College London, London, England.

F. E. Gardiol is with the Chaire d’Electromagn&isme et d’Hyperfr6-
quences, Ecole Polytechnique F6d6rale, Lausanne, Switzerland.

described by Tsandoulas and Ince [8], [9] take place: The TEOI

mode then becomes the dominant mode. By using a circular

waveguide with dielectric loading, results awailable for TEO ~

propagation could thus be utilized in the design of devices [10].

Partial studies only are available in the technical literature, due

to the lack of a mathematical method capable of solving the field

problem for hybrid modes.

In practical device development, however, a more complete

knowledge of the mode structure is necessary; the propagation

properties of the dominant mode must be known in order to

design the device, while the cutoff frequency of the fist higher

order mode limits the frequency range suitable for operation.

A computation technique, based on the application of a one-

dimensional finite-difference approach, was recently developed

by the authors [11]. This new approach yields the propagation

constant and the field pattern for any mode in a radially in-

homogeneous cylindrical structure presenting circular symmetry,

of which the ferrite loaded circular waveguide considered here is

one example.

The presence of azimuthally magnetized ferrite in the circular

waveguide produces a difference between the propagation

characteristics of the first two normal modes propagating in the

structure, -which are respectively right hand and left hand cir-
cularly polarized (in nongyrotropic circularly symmetrical struc-
tures, these two modes are spatially degenerate). When a linearly
polarized wave travels through a section of loaded guide, its
plane of polarization is rotated in the same manner as it is in
longitudinally magnetized Faraday rotators [12]. The addition
of quarter-wave plates at both ends allows one to realize a
polarization-dependent phase shifter; the principle of operation
is the same as the one used by Boyd [13], with the following
differences:

1) The center section makes use of an azimuthally magnetized
ferrite tube instead of a Faraday rotator, which requires an
external magnetic circuit.

2) Both device ends are connected to circular waveguide.


