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spin wave linewidth and on the power in the saturating
signal; the theory agrees well with observation.

This work has obvious applications to radar systems,
especially where the frequency is swept; it also provides a
novel and sensitive way to determine spin wave linewidths.
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Computer-Aided Synthesis of the Optimum
Refractive-Index Profile for a Multimode
Fiber

KATSUNARI OKAMOTO AnpD TAKANORI OKOSHI, MEMBER, IEEE

Abstract—In a multimode optical fiber, the so-called multimode
dispersion (mode-delay difference) is the principal cause that widens
the transmitted pulse. The multimode dispersion can be controlled by the
refractive-index profile. However, the optimum profile that minimizes the
multimode dispersion has not yet been determined.

This paper describes the computer-aided trial-and-error synthesis of
the optimum refractive-index profile. It is shown that the group delay is
reduced to about 103 times the value obtained with the uniform core
fiber, to about 10 ps/km. This value is comparable to the material dis-
persion obtained with an ordinary fused-silica fiber and a typical semi-
conductor laser. It is also shown that the optimum profile is a smoothed
W-shaped one.

1. INTRODUCTION

EVERAL types of permittivity profiles have been
S proposed as the optimum profile that minimizes the
multimode dispersion (mode-delay difference) of an optical
fiber [1]-[4]. In those proposals, however, the permittivity
in the core is assumed to be proportional to r®, where r
is the radial coordinate and « is an arbitrary positive
quantity. Therefore, the obtained profile cannot be the
genuine optimum.

This paper describes an approach to the genuine optimum.
We express the permittivity in the core by a power series in
terms of #, and use the variational method [5] to obtain
the delay time of each propagation mode. Next we compute
the variance of the delay time, i.e., the group delay. Then
we modify the permittivity profile so as to decrease the
group delay toward its minimum. We repeat the afore-
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mentioned process of analysis, estimation, and modification
until we obtain the optimum permittivity profile with which
the group delay is minimized. The whole process of such
trial-and-error synthesis is performed in the computer.

The example of the synthesis described in Section V of
this paper is the synthesis of the optimum profile for a
fiber in which ten LP modes propagate. The same method
can, of course, be used for any number of modes. It is
shown that the group delay can be reduced to about
1073 times the value obtained with the uniform core fiber,
to about 10 ps/km, and that the optimum profile is a
smoothed W-shaped one. This result substantiates the
validity of the proposals made by Suematsu and Furuya
for slab waveguides [6] and the present authors [3].

II. RESTRICTING CONDITIONS

We assume that the refractive-index distribution is
axially symmetric, and that the quantities listed as follows
remain constant in the course of the optimization:

1) wavelength of light 4;

2) the maximum refractive index », in the core and the

refractive index in the cladding n,;
3) number of propagating LP modes M.

Note that the core radius a is not fixed. The relative

difference of the refractive indices, which is defined
conventionally as
A = (nlz - n22) — (nl - ”2) (1)
27[12 ) n1

also remains constant from the preceding condition (2).



214

[

nir)

Fig. 1. Refractive-index proﬁl% bof radially inhomogeneous optical
Cr.

Next, we express the refractive index as

2y _ [12[1 = 2Ag(r)],
wi(r) = {n22 = n 1 — 2A],

0O<r<a
r>a 2)

o= EnlQ-G] o

and r, is the radius where n(r) is highest (see Fig. 1). The
coefficients x, (p = 1,2, - - ,n) are the parameters represent-
ing the refractive-index profile. Our aim is to determine the
optimum set of x,,.

where

II1. ANALYSIS OF AN OPTICAL FIBER USING VARIATIONAL
METHOD

The first step in the trial-and-error synthesis is the analysis
of a given fiber. A method of analysis based upon the
variational principle [5] will be briefly described.

A. Propagation Constant
The propagation constant § of an axially symmetric
optical fiber is expressed as [7]
2 _ [ §a k2 n* ()P )?r dr dO — [3 (37 IVY|’r dr d6
j3° jé“ |P|*r dr db

Q)
where W(r,0) is the electric field in the optical fiber, and
k = 2rn/A. The electric field in the cladding is given by

K,(wrja) 1
m() ‘J2ﬂ

where m denotes the azimuthal mode number, X,, is the
modified Hankel function of the order m, and w is a param-
eter defined as

lI'clad(r’e) = m( ) e-—ij (5)

= (B* — k’n,%)a’. ®)

We express the electric field in the core as

W) = Ry(r) —e &m0 ™

NG

where R, (r) is expressed in terms of a set of orthogonal
functions F,, ,(r) as

L
R,(r) = k§1 CoF (7). ®
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In the axially symmetric core,

V2 I (A fa)
F — Y& Im\k 9
mi(r) Ty ®
J = {j:l’k_l, form =0
Jm~ 15> form # 0 (10)

where j,,; denotes the kth root of J,(z) = 0. These func-
tions satisfy the orthonormalizing condition

f“ Foa)En(r)r dr = b (11

0

where §,; is Kronecker’s delta. The continuity condition
at the core—cladding interface (r = g) is expressed approx-

imately as [5]*
wK.,'(w)

[ r chore] — [ r dl{lclad] -
Yoo dr lr=a |Wagu dr li=a  K,w)

Putting (5), (7), and (12) into (4), and after some com-
putations, we may express B2 in terms of C, as

(12)

L L
g = [2 $ CCkn%a — 123y
K=11=1
L L
- v? Z Z C.CA
k=11=1
L L L L )
_ 29Ky (W) y 2 ckc,] /a2 Y ¥ CCd (13)
K, (w) «=1i= K=11=1
where
Ay = f G0V )1 dr (14)
[4]
2 —_ k2n12a22A. (15)

From the condition that 2 is stationary with respect to a
small variation of ¥, in other words to that of C,, the follow-
ing conditions must be satisfied for all k:

SZ 0, k=12, L. (16)
Using (13) and (16), we obtain
i CSy =0, k=12,--L 17
where -
S = —E’KI%W(W) + 08 = D0y — Ay (19)
u? = (k*n> — BHa® = v* — wh (19)
In order that a nontrivial solution of (17) exists,
det (Sy) =0 (20)

must hold. This equation is the characteristic equation which
determines the propagation constant of an optical fiber.

1 An approximation (1 — n(a)/n,) ~ 0O is used in deriving (12).
Therefore, when a step or valley is present at the core—cladding bound-
ary, a small error will be introduced by using (12). However, in most
practical cases we may approximate (1 — n(a)/n;) — 0 (weak guidance
approximation) and use (12).
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B. Delay Time

The variational expression of the propagation constant
[see (4)] is stationary with respect to a small variation of P.
Therefore, we may find df/dk by differentiating (4) only
where k appears explicitly (see Appendix I). Thus we obtain

b L

d(k") \¥)?r dr dO

(21)
" f f % |%r dr df
Putting (2), (5), and (7) into (21), we obtain
b dp_ {1 A( )50 §" g(MI¥)?r dr dB}
kny dk 1 2] (@ (& 1®?r dr do
=N, {l—-A (2 + X)
2
L L
L Y Clldp + 1/ — 1]
. k—z l—L (22)
Y Y GClou + 1/&, — 1]
k=11=1
where
K*(W)
m e e 23
" K DK 10 (232)
_ d(kny)
™ (23b)
_ 2n1 A dA
YETN, A4 (23¢)

Among the preceding parameters, N, is the group index
[1], and y is a parameter representing the difference in
material dispersions in the core and the cladding [2];
typically, y = 0.3. From (15) and (19), 8 is given by

2 1/2
B = kn, (1—-—2A ) . 24)
02
Thus from (22) and (24), the delay time per unit length 7(w)
may be expressed as
N

T A
do c

N [1 = AQ + /28]

[l — 2Au?jp?]t/? 23)

where ¢ denotes the light velocity in the free space, and

i Z Gl Amu + 1/6, ~ 1]
© = k=L . (6)
L

g CCiloy + 1/¢, — 1]

The matrix element A4, is given, from (3), (9), and (14), as

27

n
mkl = Z p pmkl
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where
ro\*?
Dyt = Hymgs — (;) 5 29)
1
Hypa = 2 f s2r IlhDIld) g (a9)
4] Jm(j’k)']m(’{l)

The value of H,,,, is independent from x,. We may there-
fore calculate those matrix elements before we start the
synthesis of the optimum refractive-index profile.

IV. SyNTHESIS OF THE OPTIMUM REFRACTIVE-INDEX PROFILE

A. Measure of Multimode Dispersion

As the measure of the multimode dispersion at fre-

quencies where M modes propagate, we define
feaets* o(v) do

j'vc»MH—S do

VesM +E

QM) = (30

where ¢ is a small quantity and &(v) is the variance of the
delay time for the M modes;

M
o©) = - 3 [0 ~ GOHF. &)

In the preceding equation,
@@y = L 3% %) (32)

7,(v) is the delay time of the ith mode expressed in terms of
the normalized frequency, and v, »,v, 41 are normalized
cutoff frequencies of the Mth mode and the (M + I)th
mode, respectively. In defining the measure Q(M), the
variance is averaged between two cutoff frequencies
because it is practically difficult to choose a specific trans-
mission frequency with respect to (for example, at the
median of) two cutoff frequencies.

We consider that the optimum refractive-index profile
of an optical fiber transmitting M modes is given by the
condition making Q(M) minimum. Therefore, it is obtained
as a solution of a simultaneous equation

o000 _

=12, ,n
oK, P

(33)

B. Routine of the Synthesis
The flow chart (Fig. 2) shows the routine of the synthesis.

C. Modification of x, by Newton—-Raphson Method

As shown at the bottom of Fig. 2, the Newton—-Raphson
method [8] is used in the modification of «x,. This method
will first be described for a single scalar equation. Suppose
the numerical solution of an equation

G(x) =0 (34

is to be obtained. In the Newton-Raphson method, we
first assume a proper initial value x; and modify x according
to a relation

G(Kh) d

35
G' (k) 9

Kpt1 = Ky —
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The number of the propagation

modes (M) is given.

|

Initial values of the expansion coefficients of

the refractive index profile (Kp) are given.
n

A =L x D

mee 2, “pUpmke

1

Normalized cutoff frequency Veoi
’

is computed.

(i=1,2,---,M+1)

are computed by using varjational method.

The propagation constant B1 and delay time T; are

and v for the M

™ c, M+l
propagating modes.

computed between Ve

Q(M) is computed.

Coefficients zp's are modified by Newton-Raphson

method (see Section 4.3).

Fig. 2. Routine of the synthesis of the optimum refractive-index
profile.

where s denotes the number of repetitions and d is a
deceleration factor for preventing oscillation of the solution.
In the present case, the solution of a simultaneous
equation
Gy(x)

6o = | ] =0
G,(x)

(36)

must be obtained, where x = (ky,k;," k). In this
case the modification formula corresponding to (35) is
given as

Kni1 = Ky — dJ 71 (.G (1), (37

In the preceding equation J~* is the inverse matrix of J,
which is the Jacobian of G(x) with respect to x:

J11(%) Jin(%)
J(x) = : : (3%)
J;l(“) J;n(x)
where
Jpg(®) = a—G—F(—k), g = 1,2,---n (39)

0K

q

Under proper conditions, x, converges to the solution of
(36), which satisfies

J Y ®)G(x) = 0 (40a)
(40b)

In the present problem, each line of the simultaneous
equation (36) is given, from (33), as

Kper — K = 0.

G =23

™ 41)

P
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[In the actual computation of Q(M), the integrals in (30)
are replaced by summations to save the computer time.
That is, we choose N sampling points v; (j = 1,2,-*+,N)
between v, 5 and v, 744 and use

N

1
QM) = — ¥ a(vy) “42)
N /=1
as the approximate measure of the multimode dispersion
instead of (30).] Therefore, each element of G(x) and J(x)

is given, from (39), (41), and (42), as

1 & do(v)
G k) = L % 2 43
w15 @
N 2
L =L 5 P00 10 44

N /=1 0x 0k, ’

The details of the computation of G,(x) and J,(x) are
described in Appendix II [see (A20) and (A24)]. Putting
those values into (37), we may compute x,,,; from x,.
Repetition of such a process finally leads to the optimum
x, that is, the optimum set of «,,.

V. RESULTS

To show the feasibility of the preceding process, an
example of the synthesis will be described for the following
parameters:

M = 10 (M : number of propagating linearly polarized
(LP) modes?);

n=>5 (n: number of terms representing the refractive-
index profile);

N =3 (N:number of sampling points between v, ;0
and v,,11);

L =10 (L: number of terms representing the electric
field in the core);

y = 0.3 (p: difference in material dispersions in the

core and the cladding);
n; = 1.5 (n;: maximum refractive index in the core);
A =0.01 (A:see(1)).

The starting profile is a “quadratic distribution with a
valley having depth equal to half the peak™ (that is, x; =
1.5, k, = k3 = k4, = k5 = 0). Such a profile has been
claimed by the present authors to be a fairly good one as
far as a-power refractive-index distributions in the core
are considered [3].

The gradual change of the profile is shown in Fig. 3,
where the abscissa 2 denotes the number of repetitions
performed. The corresponding variation of the normalized
delay time between v, ;o and v, ;, is shown in Fig. 4. The
variations of maximum delay difference between modes
(0tmax) and the square root of the measure Q(M) de-
fined by (30) are shown in Fig. 5(b). It is found that both

Styax and v/ O(M) are reduced dramatically; it is reduced
to about 3 x 1073 times the starting value. Note that the

2 The total number of the degenerated modes (having different
polarizations and/or field configurations) included in the 10 LP modes
is 34.
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Fig. 3. Variation of the refractive-index profile. Initial profile is a
quadratic with step (k1 = 1.5k, = &3 = Ky = Kk, = 0)

starting value itself is much lower than the value obtained
with a uniform-core fiber. The typical values of dty,x for
M = 10 are approximately 30000 ps/km for the uniform-
core fiber, 14000 ps/km for the starting profile,’ and
30 ps/km for the really optimized profile. The last value is
comparable to the material dispersion obtained with an
ordinary silica fiber and a typical semiconductor laser with

a wavelength spread of 0.2 nm; for such a combination

5Tmateria1 is typicauy 20 PS/km
The variations of the expansion coefficients are shown

3 This value may seem too large; the reason is that the highest order
mode is included in the calculation of drmax. If we exclude the highest
order mode, drmax is 25 000 ps/km for the uniform-core fiber and
3000 ps/km for the starting profile.

217

in Fig. 5(a) as functions of 4. It is found that the coefficients
for higher order terms (for x°,x®,x'°) drastically increases,
but the resultant profiles are apparently similar to the
original. The principal difference is that the sharp valley
is smoothed.

The computer time required was about 20 s for one cycle
of the analysis, estimation, and modification, when HITAC
8700/8800 was used.

VI. DiscussioNs

1) In the preceding section, an example of the synthesis
has been described for an optical fiber in which ten modes
propagate. Of course, the same methods may be used for
any number of modes M. However, the computer time
required is proportional to M 2.

2) A possible trouble inherent to such a trial-and-error
optimization is the presence of many optima, that is, the
possibility of arriving at different “optimum’ profiles when
the starting profiles are different. Mathematically, such a
possibility cannot be denied in the present case. However,
another trial-and-error synthesis starting from a different
profile (x; = 1.0, k, = k3 = Kk, = k5 = 0) finally led to
an optimum profile the same as Fig. 3(h). The authors
believe that the same profile is obtained unless we start
from an intentionally peculiar (for example, sawtoothlike)
profile.

3) In Fig. 5(b) the readers might notice a sudden decrease
of the dispersion at & = 14. Such a phenomenon is some-
times encountered in the Newton-Raphson solution; it is
due to an accidental, lucky coincidence. Note that the
expansion coefficients do not show any drastic change at
h = 14.

4) We should note that the dispersion is reduced by 107!
between 2 = 50 and 4 = 70, whereas the profiles show very
little difference between them. In the present state-of-the-
art, such a little difference of the profile can never be con-
trolled. Establishment of a very fine profile-control tech-
nique [probably a computer-controlled chemical vapor
deposition (CVD) technique] is desired.

5) By the curve-fitting method, it was found that the
optimum refractive-index profile can be approximated as

ni(r) = n [l - 4-00A(r/a)2-27]

for0 < r/a < 0.9, when y = 0.3. On the other hand, when
y = 0.0, the approximate profile is given as

n*(r) = n 1 - 4.04A(r a)°7]

for 0 < rfla < 0.9. These approximate formulas are in
good agreement with Olshansky and Keck’s result {2].

6) To demonstrate the effectiveness of the refractive-index
valley at the core—cladding boundary, values of N o)
of quadratic-core fibers have been computed for various
M as functions of the valley depth. Fig. 6(a) shows J QM)
as functions of the parameter p representing the valley
depth (see [3]). It is found that the deeper the valley, the
smaller the value of v/ Q(M). In Fig. 6(b), cases are compared
when the valley is filled up to various levels. It is found that a
minimum point is present for py. In the case of M = 10,




218
@) h=1
1.500 -0
l'id
cr [ {ns/km)
45
1.498F
i J1o
1.‘96 ™ /
aqux =142 ‘ns/km 1
415
L L L
% V2 v
)] h=20
1.500 0
(.14
cr {ns/km)
8Tyax = 2.3 nsikm 5
1.498 v . L
Vt V2 V;
-
1.5000 (@ h=40
cr | 10
1.4998 | 6t
L Tinsixm)
1.4996} 44
1.4994
6Tyax =1.36 ns/km 2
1.4992 L v v
v V2 V5
1.5000 lg) h=60
0
cr &
1.4998 {ns/km)
8%yax = 0.05 ns/km
1
1.4996 v A v
V«‘ v: V3

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1977

1.500 (b} h=10 .
.14
“ | {{ns/km)
4s
1.498 ]
- 410
1
1.498} / ]
STyax = 14.5 ns/km ‘ "
A . .
\ /) vV s
4.500 (d} h=30 .
) = ér
“ {ns/km)
8Tyax = 1.6 ns/km s
498l—1L , .
1.48 V' = i
1.5000 i h=50
e Y
er
ot
1.4998
Shax = 0.18 ns/km (ns/km)
1
14996 L—1 ) .
v V2 m
1.5000 ¢ .
er |
or
1.4998 |- T
&Twax = 0.036  nslkm
- 1
1.4996 2 . .
v1 vz v,

Fig. 4. Variation of the normalized delay time. Note that the ordinate is expanded in (e)—(h).
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Fig. 5. Variation of (a) the expansion coefficients (x,) and (b) the

square root of the measure of the multimode dispersion (v O(M )]
and the maximum value of the mode delay difference (6tpax).

for which the synthesis has been performed, the minimum
is found at p, = 1.5, which gives a good approximation to
the optimum profile obtained by the synthesis [ see Fig. 3(h)].

VII. CONCLUSION

The optimum refractive-index profile of a multimode
fiber has been obtained by a computer-aided trial-and-error
synthesis method. The proposed method will be useful for
the design of multimode optical fibers.
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Fig. 6. The measure v Q(M) of quadratic core fiber for various M,
(a) as functions of the valley depth, (b) as functions of the level to
which the valley is filled up.

APPENDIX I
DerivaTION OF (21) [9]

We first note that the right-hand side of (4) is stationary
for a small variation of ¥(r,6). When k deviates slightly
making f and ¥ also deviate, we have

B + 5p? f ¥ 4 5% ds

- f [kn + S(km)J|¥ + 0| dS

- f VP + 6VP|2dS = 0 (Al)
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where {, dS denotes the integral over the cross section of the

fiber. Neglecting the terms of order 2, we may rewrite
(Al) as

{ﬁzf I¥|2 dS — f k2n?|¥|? dS +f [V‘Plzds}
+ {ﬁzfaml s — f K2n?8|%)? dS + f Eivadk dS;

+ {2/35/3 f P2 dS — 2 f knd(kn)| |2 dS} =0. (A2

Applying the stationary condition 5% = 0, that is,
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where C is an L-element column vector consisting of C; in
(8), and S'and W are L x L matrices:

2wk, .., (w)
K(w)
W = 04 + 1/E, — L. (A12)

Partially differentiating (A9) and (A10) with respect to

+ @ = 40 — V4w (All)

kl=—

k, (p = 1,2, - -,n), we obtain
S*C + SC* =0 (Al13)
1ICTW*C + CTWC* = 0 (Al9)

where the symbol * denotes a differentiation with respect to
K, We may combine (A13) and (A14) to obtain

B f %2 dS — f K*n28|%|? dS + f SIVE|? dS = 0 AC* = -BC (A15)
s s s where 4 and B are (L + 1) x L matrices given as
(A3) <
. 4= (cry) (A16)
to the second term of (A2), and also applying (4) to the cC'w
first term of (A2), we obtain S
B= (% CTW*)' (A17)
2 g0 _ 2 g9
pop J; [¥1" S fskné(kn)l‘l’l as = 0. (A4) By using the generalized inverse matrix of A4 which is
. . expressed as
Equation (A4) may be rewritten as A = AT(AAT)"! (Al8)
f kn 4N \g12 g C* is given, from (A15) and (A18), as
ﬁg-l-’z - dk (AS) C* = — A(447)"1BC. (A19)
f e[ dS Putting (31), (32), (42), and (A7) into (41), we obtain
s
G, (k) = KT'T,» — KTXXT,» (A20)
APPENDIX I where
DERIVATION OF EQUATIONS GIVING G (k) AND J,,,(¥) 2 -
o r=%L_[(+2%eo (A21)
From (22), delay time 7 is expressed as 2
knyN, { ( )j g(r)[‘I’l2 dS} 1 X1 M
=] - A2 ) (A6 - — ;
‘ B 2 _fs |¥|* dS (A9) KI'T» = N 1;1 {M igi FUTUP:I (A22)
Partially differentiating © with respect to x,, dt/dx, is given 1 Y71 X 1 M
y g pect 10 K, Grl0icp 15 & axty =23 [Lyn][L 5] e
N 1 LM =1 M i=1
o _ AN 12 (A7)
oK, c 7 o We may also obtain J,, from (31), (32), (43), and (A7) as
where Jp®) = KT, T — KT, XTD (A24)
L 6C, 6Ck
2 X + Cz {O[0u + 1/& — 1] — [Apu + 1/5n — 11}
.Y\ =151 016
n-(2+2) " o)
2
Y ¥ CClou + 1w — 1]
k=11=1 L L
y Z Z Ckcl pmkl
) "~
2 Y GCloy + 178, — 1]
k=11=1
In the preceding calculation, it is assumed that n; and A  where
do not change in the course of the optimization. 1 1 M
The term 9C,/dk, in (A8) can be calculated as follows. (LT = N ; ; M ; TijpTijq (A25)
From (17) and the normalizing condition for the power L N[y M | M
density, we have KT XTIy ==Y [ i p] [Z\_/I D Tijq] . (A26)
SC = 0 (A9) N j=1 LM =1 i=1
CTwWC =1 (A10) In(A20) and (A24), G, and J,, are normalized by 2(AN, /c)*.
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Propagation in Circular Waveguide Loaded with an
Azimuthally Magnetized Ferrite Tube

OLIVIER PARRIAUX anp FRED E. GARDIOL,
SENIOR MEMBER, IEEE

Abstract—A new computer method for the study of radially inhomo-
geneous guiding structures presenting circular symmetry is utilized to
determine propagation properties of a ferrite loaded guide. The non-
reciprocal characteristics obtained can be used to design latching rotators
and differential phase shifters for polarization orthogonality restoration
in high-frequency (above 10 GHz) communication systems with frequency
reuse,

1. INTRODUCTION

A circular waveguide loaded with one or several tubes of
azimuthally magnetized ferrite supports nonreciprocal modes of
propagation, which may be used to realize rotators and differen-
tial phase shifters. This possibility was briefly outlined by Fox
et al. [1] and by Clarricoats [2].

Until now, however, the studies devoted to this guiding struc-
ture only considered TE,, modes, for which an exact analytical
solution is available in terms of hypergeometric functions [3]-[6].
A perturbation method also developed for this structure was
applied only to study TE,, mode propagation [7]. It must be
noted, however, that the dominant mode of the empty circular
waveguide is the TE; mode, which is not part of the TE,, mode
subset; the mode hierarchy remains basically the same for low
to medium loading of the waveguide, i.e., conditions most
suitable for device operation. Only when the waveguide is more
heavily loaded with dielectric inserts does the mode inversion
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described by Tsandoulas and Ince [8], [9] take place: The TEq,
mode then becomes the dominant mode. By using a circular
waveguide with dielectric loading, results available for TE,,
propagation could thus be utilized in the design of devices [10].
Partial studies only are available in the technical literature, due
to the lack of a mathematical method capable of solving the field
problem for hybrid modes.

In practical device development, however, a more complete
knowledge of the mode structure is necessary; the propagation
properties of the dominant mode must be known in order to
design the device, while the cutoff frequency of the first higher
order mode limits the frequency range suitable for operation.

A computation technique, based on the application of a one-
dimensional finite-difference approach, was recently developed
by the authors [11]. This new approach yields the propagation
constant and the field pattern for any mode in a radially in-
homogeneous cylindrical structure presenting circular symmetry,
of which the ferrite loaded circular waveguide considered here is
one example. '

The presence of azimuthally magnetized ferrite in the circular
waveguide produces a difference between the propagation
characteristics of the first two normal modes propagating in the
structure, which are respectively right hand and left hand cir-
cularly polarized (in nongyrotropic circularly symmetrical struc-
tures, these two modes are spatially degenerate). When a linearly
polarized wave travels through a section of loaded guide, its
plane of polarization is rotated in the same manner as it is in
longitudinally magnetized Faraday rotators [12]. The addition
of quarter-wave plates at both ends allows one to realize a
polarization-dependent phase shifter; the principle of operation
is the same as the one used by Boyd [13], with the following
differences:

1) The center section makes use of an azimuthally magnetized
ferrite tube instead of a Faraday rotator, which requires an
external magnetic circuit.

2) Both device ends are connected to circular waveguide.



